A map projection is a systematic transformation of the latitudes and longitudes of locations from the surface of a sphere or an ellipsoid into locations on a plane. Maps cannot be created without map projections. All map projections necessarily distort the surface in some fashion. Depending on the purpose of the map, some distortions are acceptable and others are not; therefore, different map projections exist in order to preserve some properties of the sphere-like body at the expense of other properties.
Maps can be more useful than globes in many situations: they are more compact and easier to store; they readily accommodate an enormous range of scales; they are viewed easily on computer displays; they can facilitate measuring properties of the region being mapped; they can show larger portions of the Earth's surface at once; and they are cheaper to produce and transport. These useful traits of maps motivate the development of map projections.
Many properties can be measured on the Earth's surface independent of its geography. Some of these properties are:
Map projections can be constructed to preserve at least one of these properties, though only in a limited way for most. Each projection preserves, compromises, or approximates basic metric properties in different ways. The purpose of the map determines which projection should form the base for the map. Because many purposes exist for maps, a diversity of projections have been created to suit those purposes.
Significant Projections
Web Mercator: EPSG: 3857
Our base layers are in EPSG: 3857 or Web Mercator. Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator is a variant of the Mercator projection. Web Mercator shares some of the same properties of the standard Mercator projection: north is up everywhere, meridians are equally spaced vertical lines, but areas near the poles are greatly exaggerated.
Unlike the ellipsoidal Mercator and spherical Mercator, the Web Mercator is not quite conformal due to its use of ellipsoidal datum geographical coordinates against a spherical projection. Rhumb lines are not straight lines. The benefit is that the spherical form is much simpler to calculate, saving many computing cycles.
WGS 84: EPSG: 4326
WGS 84.is the reference system used by the Global Positioning System. It is geocentric and globally consistent within ±1 m. Current geodetic realizations of the geocentric reference system family International Terrestrial Reference System (ITRS) maintained by the IERS are geocentric, and internally consistent, at the few-cm level, while still being metre-level consistent with WGS 84.
The WGS 84 originally used the GRS 80 reference ellipsoid, but has undergone some minor refinements in later editions since its initial publication. Most of these refinements are important for high-precision orbital calculations for satellites but have little practical effect on typical topographical uses. The following table lists the primary ellipsoid parameters.
Azimap supports these two projection systems as well as most others( over 6000 in total) so most likely we can import and display your data in its native formats.